7'. 2 Precalculus Review: What is a "Polar Coordinate"?

The x-coordinate tells me

The y-coordinate tells me

Polar Form (r, θ)
Example: Plot $\left(3,30^{\circ}\right)$ and $\left.-2,75^{\circ}\right)$

The r-coordinate tells me the directed (sign $+/$ - matters) distance from the origin

The θ-coordinate tells me angle in standard position that will intersect this point.

Put r and θ into your rectangular form picture above. Do you see the right triangle above? Copy it here:

Right triangle picture	Pythagorean theorem:	
	Sine:	

Converting between polar and rectangular coordinates

$$
\begin{array}{llll}
(x, y) & \leftrightarrow & 1 & , \\
(& &) & (r, \theta)
\end{array}
$$

Practice

1. Convert to rectangular coordinates using exact values when you can. $\left(-6,-780^{\circ}\right)$	2. Convert to polar coordinates with $r \geq 0$ and $\theta \in\left[0,360^{\circ}\right]$ using exact values when you can.

