7.1 - Exponential Functions Sample Problems

A. Make a table of values and graph precisely

B. Analyze the following exponential function: $y=2\left(\frac{1}{2}\right)^{x}+2$

C. Write a function equation that correctly models each description, then answer the question. Let $x=$ the number of hours since $2 p m$ and $y=$ the number of bacteria in a sample.

| At 2 pm, the population in the sample is 700 . It
 increases by 200 bacteria every hour. How many
 bacteria will be in the sample at 11 pm ? | At 2 pm, the population in the sample is 1000. It
 triples every hour. How many bacteria will be in
 the sample at $5 \mathrm{pm} ?$ |
| :--- | :--- | :--- |
| At 2 pm, the population of the sample was 300.
 The population decreases by 31% each hour. How
 many bacteria will be in the sample at midnight? | At 2 pm, the population of the sample was 900
 The population increases by 7.2% each hour. How
 many bacteria will be in the sample at 8 pm? |

D. Sketch the graphs of the following functions. Label the asymptote and y-intercept and make sure that the general shape and end behavior are correctly drawn:

E. Solve by creating common bases

$2^{x} \cdot 2^{x-5}=8^{2 x+1}$	$\left(\frac{1}{3}\right)^{x}=3^{x+1} \cdot 9^{x}$

