Name:

7'.1 Do Now

Suppose the Maclaurin series for some function f(x) is given by

$$1 + 2x + \frac{3x^2}{2} + \frac{4x^3}{6} + \dots + \frac{(n+1)x^n}{(n)!} + \dots$$

Find $f''(0)$	Let $q(x) = xf(x)$. Write the first four terms and the
	Let $q(x) = x_f(x)$. Write the first rout terms and the
	Belief at term for the matiau in series for $q(x)$.
Let $g(x) = xf'(x)$. Write first four terms and the general	Let $h(x) = \int_{-\infty}^{x} f(t) dt$. Write the first four terms and the
term for the Maclaurin series for $g(x)$.	\mathbf{J}_0
	general term for the Maclaurin series for $h(x)$.