15.4-Integral Practice Day

Most common and important methods:

1. Always try to simplify an integral first and see if any "basic" antiderivatives apply. Some common techniques:
a. Write as a polynomial and use the power rule.
b. Separate the numerator so that you have two ratios.
c. If the numerator's degree is greater than or equal to the denominator's \rightarrow long division.
2. If that doesn't work, try u-substitution. Especially if you see a function composition.
3. Next, try integration by parts.
a. This is most effective when u is a log or power function. Also effective on inverse trig functions.
4. If you see a rational function:
a. If the denominator is factorable and the numerator has a lower degree \rightarrow partial fractions
5. If you see a quadratic expression with a linear term, for which the above methods aren't working \rightarrow complete the square and use u-substitution. Generally, you're doing this to get the integrand to match an inverse trig form.

"Basic Integrals" to have memorized:

$$
\begin{array}{|l|l}
\hline \int x^{n} d x=\frac{x^{n+1}}{n+1}+c ; n \neq-1 & \int \sec ^{2} x d x=\tan x+c \\
\int \frac{1}{x} d x=\ln x+c & \int \csc ^{2} x d x=-\cot x+c \\
\int e^{x} d x=e^{x}+c & \int \sec x \tan x d x=\sec x+c \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+c & \int \csc x \cot x d x=-\csc x+c \\
\int \sin x d x=-\cos x+c & \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+c \\
\int \cos d x=\sin x+c & \int \frac{1}{1+x^{2}} d x=\arctan x+c \\
\hline
\end{array}
$$

More rare methods. These are fun to know, but are much less common.

1. Sums and/or differences of squares: Use Pythagorean Identities

Expression in Integrand	Related Trig Identity	make this substitution
$1-x^{2}$	$1-\sin ^{2} \theta=\cos ^{2} \theta$	$x=\sin \theta$
$x^{2}+1$	$\tan ^{2} \theta+1=\sec ^{2} \theta$	$x=\tan \theta$
$x^{2}-1$	$\sec ^{2} \theta-1=\tan ^{2} \theta$	$x=\sec \theta$

2. Products of sine and cosine or of tangent and secant. Use identities to put it one of these forms:
a. $\int($ in terms of $\sin x) \cdot \cos x d x \leftarrow u=\sin x, d u=\cos x d x$
b. $\int($ in terms of $\cos x) \cdot \sin x d x \leftarrow u=\cos x,-d u=\sin x d x$
c. $\int($ in terms of $\tan x) \cdot \sec ^{2} x d x \leftarrow u=\tan x, d u=\sec ^{2} x d x$
d. $\int($ in terms of $\sec x) \cdot \sec x \tan x d x \leftarrow u=\sec x, d u=\sec x \tan x d x$
e. Else, it's probably necessary to use a more obscure trig identity that you don't have to memorize.

Choose a method for each of these examples and integrate:

1. $\int \frac{x^{3}+5}{x^{2}} d x$	2. $\int \frac{x^{2}}{e^{2 x}} d x$

AP CALCULUS BC

5. $\int_{0}^{1} x \sqrt{1+8 x^{2}} d x$	6. $\int 5 x\left(\sqrt{x}-x^{2}\right) d x$

9. $\int \ln (x-3) d x$ 10. $\int \cos 2 x \cdot e^{-x} d x$
10. $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} d x \quad$ 12. $\int \frac{3 x^{2}}{x^{2}+9} d x$
