15.4 - Integral Practice Day

Most common and important methods:

- 1. Always try to <u>simplify</u> an integral first and see if any "basic" antiderivatives apply. Some common techniques:
 - a. Write as a polynomial and use the power rule.
 - b. Separate the numerator so that you have <u>two</u> ratios.
 - c. If the numerator's degree is greater than or equal to the denominator's \rightarrow long division.
- 2. If that doesn't work, try <u>u-substitution</u>. Especially if you see a <u>function composition</u>.
- 3. Next, try integration by parts.
 - a. This is most effective when *u* is a log or power function. Also effective on inverse trig functions.
- 4. If you see a rational function:
 - a. If the denominator is factorable and the numerator has a lower degree \rightarrow partial fractions
- If you see a quadratic expression with a <u>linear term</u>, for which the above methods aren't working → <u>complete</u> <u>the square</u> and use u-substitution. Generally, you're doing this to get the integrand to match an inverse trig form.

$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c; \ n \neq -1$	$\int \sec^2 x dx = \tan x + c$
$\int \frac{1}{x} dx = \ln x + c$	$\int \csc^2 x dx = -\cot x + c$
$\int e^x dx = e^x + c$	$\int \sec x \tan x dx = \sec x + c$
$\int a^x dx = \frac{a^x}{a^x} + a$	$\int \csc x \cot x dx = -\csc x + c$
$\int a dx = \frac{1}{\ln a} + c$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$
$\int \sin x dx = -\cos x + c$	$\sqrt{1-x}$
$\int \cos dx = \sin x + c$	$\int \frac{1}{1+x^2} dx = \arctan x + c$

"Basic Integrals" to have memorized:

More rare methods. These are fun to know, but are much less common.

1. Sums and/or differences of squares: Use Pythagorean Identities

Expression in Integrand	Related Trig Identity	make this substitution
$1 - x^2$	$1 - \sin^2 \theta = \cos^2 \theta$	$x = \sin \theta$
$x^2 + 1$	$\tan^2\theta + 1 = \sec^2\theta$	$x = \tan \theta$
$x^2 - 1$	$\sec^2 \theta - 1 = \tan^2 \theta$	$x = \sec \theta$

- 2. Products of sine and cosine or of tangent and secant. Use identities to put it one of these forms:
 - a. $\int (in \ terms \ of \ sinx) \cdot \cos x \ dx \leftarrow u = \sin x, \ du = \cos x \ dx$
 - b. $\int (in \ terms \ of \ cosx) \cdot \sin x \ dx \leftarrow u = \cos x, -du = \sin x \ dx$
 - c. $\int (in \ terms \ of \ tanx) \cdot \sec^2 x \ dx \leftarrow u = \tan x, \ du = \sec^2 x \ dx$
 - d. $\int (in \ terms \ of \ secx) \cdot \sec x \tan x \ dx \leftarrow u = \sec x, \ du = \sec x \tan x \ dx$
 - e. Else, it's probably necessary to use a more obscure trig identity that you don't have to memorize.

AP CALCULUS BC

Choose a method for each of these examples and integrate:

1	$\int x^{3+5} dx$	$\int \int x^2 dx$
1.	$\int \frac{1}{r^2} dx$	2. $\int \frac{1}{e^{2x}} dx$
	x	C
		~
2	New two distances Franciscus and a state substance by secure	
3.	Non-traditional Example: Use integration by parts	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to derive the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	$4. \int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for $\int lnx dx$	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for <i>∫ lnx dx</i>	4. $\int_0^\infty e^{-x} dx$
3.	Non-traditional Example: Use integration by parts to <u>derive</u> the formula for <i>∫ lnx dx</i>	4. $\int_0^\infty e^{-x} dx$

AP CALCULUS BC

5. $\int_{-1}^{1} x \sqrt{1 + 8x^2} dx$	6. $\int 5x(\sqrt{x}-x^2)dx$
$\int J_0 \pi V \Gamma \int d\pi d\pi$	
	$-c^{\infty} x^2$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1} \frac{1}{(x^3+x^2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_1 \frac{1}{(x^3+2)^2} dx$
$7. \int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_1^1 \frac{1}{(x^3+2)^2} dx$
$7. \int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_1^1 \frac{1}{(x^3+2)^2} dx$
$7. \int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_1^1 \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{1}{(x^3+2)^2} dx$
7. $\int \frac{1}{x^2 - 7x + 10} dx$	8. $\int_{1}^{1} \frac{(x^3+2)^2}{(x^3+2)^2} dx$

AP CALCULUS BC	
9. $\int \ln(x-3) dx$	10. $\int \cos 2x \cdot e^{-x} dx$
5 ()	5
	- 3r ²
11. $\int_0^1 \frac{1}{3/x} dx$	12. $\int \frac{3x^2}{x^2+x^2} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	$12. \int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	$12. \int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	$12. \int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	$12. \int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	$12. \int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
$11. \int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$
11. $\int_0^1 \frac{1}{\sqrt[3]{x}} dx$	12. $\int \frac{3x^2}{x^2+9} dx$