BC Calculus

Review \#9-Series

1996 BC2 (no calculator)
The Maclaurin series for $f(x)$ is given by $1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{4}}{4!}+\ldots+\frac{x^{2 n}}{(n+1)!}+\ldots$
a) Find $f^{\prime}(0)$ and $f^{(17)}(0)$.
b) For what values of x does the series converge? Show your reasoning.
c) Let $g(x)=x f(x)$. Write the Maclaurin series for $g(x)$, showing the first three nonzero terms.
d) Write $g(x)$ in terms of a familiar function without using series.

Let $P(x)=7-3(x-4)+5(x-4)^{2}-2(x-4)^{3}+6(x-4)^{4}$ be the fourth degree Taylor polynomial for the function f about 4. Assume that f has derivatives of all orders for all real numbers.
a) Find $f(4)$ and $f^{\prime \prime \prime}(4)$.
b) Write the second degree Taylor polynomial for f^{\prime} about 4 and use it to approximate $f^{\prime}(4.3)$.
c) Write the fourth degree Taylor polynomial for $g(x)=\int_{0}^{x} f(t) d t$ about 4 .
d) Can $f(3)$ be determined from the information given? Justify your answer.

The function f has derivatives of all orders for all real numbers x. Assume that $f(2)=-3, f^{\prime}(2)=5, f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
a) Write the third degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 3$ for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to $f(1.5)$ to explain why $f(1.5) \neq-5$.
c) Write the fourth degree Taylor polynomial, $P(x)$, for $g(x)=f\left(x^{2}+2\right)$ about $x=0$. Use P to explain why g must have a relative minimum at $x=0$.

2003B BC6 (no calculator)
The function f has a Taylor series about $x=2$ that converges to $f(x)$ for all x in the interval of convergence.
The nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n+1)!}{3^{n}}$ for $n \geq 1$, and $f(2)=1$.
a) Write the first four terms and the general term of the Taylor series for f about $x=2$.
b) Find the radius of convergence for the Taylor series for f about $x=2$.
c) Let g be a function satisfying $g(2)=3$ and $g^{\prime}(x)=f(x)$ for all x. Write the first four terms and the general term of the Taylor series for g about $x=2$.
d) Does the Taylor series for g as defined in part c) converge at $x=2$? Give a reason for your answer.

2004B BC2 (no calculator)
Let f be a function having derivatives of all orders for all real numbers. The third degree Taylor polynomial for f about $x=2$ is given by $T(x)=7-9(x-2)^{2}-3(x-2)^{3}$.
a) Find $f(2)$ and $f^{\prime \prime}(2)$.
b) Is there enough information to determine whether f has a critical point at $x=2$?

If not, explain why not.
If so, determine whether $f(2)$ is a relative maximum, a relative minimum, or neither. Justify your answer.
c) Use $T(x)$ to find an approximation for $f(0)$. Is there enough information given to determine whether f has a critical point at $x=0$?

If not, explain why not.
If so, determine whether $f(0)$ is a relative maximum, a relative minimum, or neither. Justify your answer.
d) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x in the closed interval [0,2]. Use the Lagrange error bound on the approximation for $f(0)$ found in part c) to explain why $f(0)$ is negative.

A function is defined by $f(x)=\frac{1}{3}+\frac{2}{3^{2}} x+\frac{3}{3^{3}} x^{2}+\ldots+\frac{n+1}{3^{n+1}} x^{n}+\ldots$ for all x in the interval of convergence of the given power series.
a) Find the interval of convergence for this power series. Show the work that leads to your answer.
b) Find $\lim _{x \rightarrow 0} \frac{f(x)-\frac{1}{3}}{x}$.
c) Write the first three nonzero terms and the general term for an infinite series that represents $\int_{0}^{1} f(x) d x$.
d) Find the sum of the series determined in part c).

