BC Calculus

Review \#8 - More Integral Applications

2004B AB2 (calculator allowed)
For $0 \leq t \leq 31$, the rate of change of the number of mosquitoes on Tropical Island at time t days is modeled by $R(t)=5 \sqrt{t} \cos \left(\frac{t}{5}\right)$ mosquitoes per day. There are 1000 mosquitoes on Tropical Island at time $t=0$.
(a) Show that the number of mosquitoes is increasing at time $t=6$.
(b) At time $t=6$, is the number of mosquitoes increasing at an increasing rate, or is the number of mosquitoes increasing at a decreasing rate? Give a reason for your answer.
(c) According to the model, how many mosquitoes will be on the island at time $t=31$? Round your answer to the nearest whole number.
(d) To the nearest whole number, what is the maximum number of mosquitoes for $0 \leq t \leq 31$? Show the analysis that leads to your conclusion.

2000 AB4 (calculator allowed)
Water is pumped into an underground storage tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \leq t \leq 120$ minutes. At time $t=0$, the tank contain 30 gallons of water.
(a) How many gallons of water leak out of the tank from $t=0$ to $t=3$ minutes.
(b) How many gallons of water are in the tank at time $t=3$ minutes.
(c) Write an expression for $A(t)$, the total number of gallons of water in the tank at time t.
(d) At what time $t, 0 \leq t \leq 120$, is the amount of water in the tank a maximum? Justify your answer.

2007 AB2 BC2 (calculator allowed)

The amount of water in a storage tank, in gallons, is modeled by a continuous function on the time interval $0 \leq t \leq 7$, where t is measured in hours. In this model, rates are given as follows:
(i) The rate at which water enters the tank is $f(t)=100 t^{2} \sin (\sqrt{t})$ gallons per hour for $0 \leq t \leq 7$.
(ii) The rate at which water leaves the tank is $g(t)=\left\{\begin{array}{l}250 \text { for } 0 \leq t<3 \\ 2000 \text { for } 3 \leq t \leq 7\end{array}\right.$ gallons per hour.

The graphs of f and g, which intersect at $t=1.617$ and $t=5.076$, are shown in the figure above. At time $t=0$, the amount of water in the tank is 5000 gallons.
(a) How many gallons of water enter the tank during the time interval $0 \leq t \leq 7$? Round your answer to the nearest gallon.
(b) For $0 \leq t \leq 7$, find the time intervals during which the amount of water in the tank is decreasing. Give a reason for each answer.
(c) For $0 \leq t \leq 7$, at what time t is the amount of water in the tank the greatest? To the nearest gallon, compute the amount of water at this time. Justify your answer.

