BC Calculus

Review \#5 - Slope Fields and Euler's Method

1998 BC4 (calculator allowed)
Consider the differential equation given by $\frac{d y}{d x}=\frac{x y}{2}$.
a) On the axes below, sketch a slope field for the given differential equation at the nine points indicated.

b) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=3$. Use Euler's method starting at $x=0$ with step size of 0.1 to approximate $f(0.2)$. Show the work that leads to your answer.
c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=3$. Use your solution to find $f(0.2)$.

Consider the differential equation given by $\frac{d y}{d x}=x(y-1)^{2}$.
a) On the axes provided, sketch a slope field for the given differential equation at the eleven points indicated.

b) Use the slope field for the given differential equation to explain why a solution could not have the graph shown below.

c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=-1$.
d) Find the range of the solution found in part c).

Consider the differential equation $\frac{d y}{d x}=2 y-4 x$.
a) The slope field for the given differential equation is given.

Sketch the solution curve that passes through the point $(0,1)$ and sketch the solution curve that passes through the point (0, -1).

b) Let f be the function that satisfies the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with step size of 0.1 , to approximate $f(0.2)$. Show the work that leads to your answer.
b) Find the value of b for which $y=2 x+b$ is a solution to the given differential equation. Justify your answer.
d) Let g be the function that satisfies the given differential equation with the initial condition $g(0)=0$. Does the graph of g have a local extremum at the point $(0,0)$? If so, is the point a local maximum or a local minimum? Justify your answer.

