Review \#4 - Differential Equations

1988 BC6 (no calculator)
Let f be a differentiable function for all $x \geq 0$ such that $f(0)=5$ and $f(3)=-1$.
Suppose that for any number $b>0$ the average value of $f(x)$ on the interval $0 \leq x \leq b$ is $\frac{f(0)+f(b)}{2}$.
a) Find $\int_{0}^{3} f(x) d x$.
b) Prove that $f^{\prime}(x)=\frac{f(x)-5}{x}$ for all $x>0$.
c) Find $f(x)$.

Let f and g be continuous functions with the following properties.
i) $\quad g(x)=A-f(x)$ where A is a constant.
ii) $\quad \int_{1}^{2} f(x) d x=\int_{2}^{3} g(x)$.
iii) $\quad \int_{2}^{3} f(x) d x=-3 A$.
a) Find $\int_{1}^{3} f(x) d x$ in terms of A.
b) Find the average value of $g(x)$ in terms of A, over the interval $[1,3]$.
c) Find the value of k if $\int_{0}^{1} f(x+1) d x=k A$.

At time $t, t \geq 0$, the volume of a sphere is increasing at a rate proportional to the reciprocal of its radius. At $t=0$, the radius of the sphere is 1 and at $t=15$, the radius of the sphere is 2 . (the volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$).
a) Find the radius as a function of t.
b) At what time t will the volume of the sphere be 27 times its volume at $t=0$?

Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f, the slope is given by $\frac{3 x^{2}+1}{2 y}$.
a) Find the slope of the graph of f at the point where $x=1$.
b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
c) Find $f(x)$ by solving the separable differential equation $\frac{3 x^{2}+1}{2 y}$ with the initial condition that $f(1)=4$.
d) Use your solution from part c) to find $f(1.2)$.

