BC Calculus

Review \#3 - Derivative Applications

1. Water is flowing into a cylindrical tank of radius 5 meters at the rate of 16 cubic meters per minute. How fast is the water level rising?
2. Water is running out of a conical funnel at the rate of 1 cubic in per second. If the radius of the base of the funnel is 4 inches and the height is 8 inches, find the rate at which the water level is dropping when it is 2 inches from the top.
3. Sand falling from a chute forms a conical pile whose altitude is always equal to $4 / 3$ the radius of the base.
a) How fast is the volume increasing when the radius of the base is 3 feet and is increasing at the rate of 3 inches/minute?
b) How fast is the radius increasing when it is 6 feet and the volume is increasing at the rate of 24 cubic feet per minute?
4. Two parallel sides of a rectangle are being lengthened at the rate of $2 \mathrm{~cm} / \mathrm{sec}$, while the other two sides are being shortened in such a way that the figure remains a rectangle with constant area of 50 sq cm . What is the rate of change of the perimeter when the length of an increasing side is
a) 5 cm ?
b) 10 cm ?
c) What are the dimensions when the perimeter ceases to decrease?
5. A balloon is rising vertically over a point A at the rate of $15 \mathrm{ft} / \mathrm{sec}$. Point B on the ground is level with point A and is 30 ft from point A. At what rate is the distance between B and the balloon changing when the balloon is 40 ft high?
6. A barge whose deck is 10 ft below the level of a dock is being pulled into the dock by means of a cable attached to the deck and passing through a ring on the dock. The barge is approaching the dock at $3 / 4$ feet per second. How fast is the cable being pulled in when the boat is 24 feet from the dock?
7. Ship A is sailing due south at $16 \mathrm{~km} / \mathrm{hr}$ and ship $B, 32 \mathrm{~km}$ south of ship A, is sailing due east at $12 \mathrm{~km} / \mathrm{hr}$.
a) At what rate are they separating after 1 hour?
b) At what rate are they separating after 2 hours?
c) When do they cease to approach each other and how far apart are they at that time?
8. A floodlight is on the ground 45 meters from a building. A person 2 meters tall runs from the floodlight directly towards the building at the rate of 5 meters/second. How fast is the length of his shadow changing when he is 15 meters from the building?
9. A cube is changing in such a way that the volume is increasing at the rate of $3 \mathrm{~m}^{3} / \mathrm{sec}$. Let t_{0} be the instant when the numerical rate of change of the volume is equal to the numerical rate of change of the surface area.
a) Find the value of t_{0}.
b) What is the rate of change in the length of a side at that same moment?
10. A water tank is being drained for cleaning. If $G(t)$ represents the number of gallons of water in the tank after t minutes and $G(t)=20(30-t)^{2}$, find the following
a) How fast is the water draining at $t=10$ minutes?
b) Find t_{0} if the average rate at which water is draining between t_{0} and $2 t_{0}$ is 60 gallons per minute.
