BC Calculus

Review \#2-Derivatives

Differentiate the following

1) $f(x)=x^{14}+10 x^{2}+7 x-4$
2) $y=x^{-2}-3 x^{-5}+3 x^{-8}$
3) $g(x)=\frac{x^{3}-3 x+5}{x^{2}}$
4) $\quad f(x)=\cos \left(\frac{x-1}{x+1}\right)$
5) $\quad k(x)=\frac{(3 x-2)^{6}}{(2 x+1)^{7}}$
6) $\quad f(x)=\ln \left(x^{\frac{3}{2}}+2 x^{\frac{3}{5}}-4 x^{\frac{4}{7}}\right)$
7) $\quad F(x)=\arctan (4 x+3)$
8) $\quad f(x)=\sin ^{3}\left(3 x^{2}\right) e^{-4 x}$
9) $\quad f(x)=\cot (3 x) \sec ^{4}(2 x)$
10) $y=(\sin x)^{\tan x}$

For \#15-16, Find dy/dx
11) $x^{2}-\ln (2 x y)+3 y^{2}=2$
12) $y^{2}+(3 \cos x) y^{2}+3 x^{3}-5=0$
13) Write an equation for the lines tangent to and normal to the graph of $4 x^{2}+9 y^{2}=36$ when $x=6$.
14) Given the parametric function $x=3 t-5$ and $y=t^{2}+2 t-4$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.

1992 BC3 (calculator active)
At time $t, 0 \leq t \leq 2 \pi$, the position of a particle moving along a path in the $x y$-plane is given by the parametric equations $x=e^{t} \sin t$ and $y=e^{t} \cos t$.
a) Find the slope of the path of the particle when $t=\frac{\pi}{2}$.
b) Find the speed of the particle when $t=1$.
c) Find the distance traveled by the particle along the path from $t=0$ to $t=1$.

1996 AB4 BC4 (calculator allowed)
This problem deals with functions by $f(x)=x+b \sin x$, where b is a positive constant and $-2 \pi \leq x \leq 2 \pi$.
a) Sketch the graph of the two functions, $y=x+\sin x$ and $y=x+3 \sin x$.
b) Find the x-coordinates of all points, $-2 \pi \leq x \leq 2 \pi$, where the line $y=x+b$ is tangent to the graph of $f(x)=x+b \sin x$.
c) Are the points of tangency described in part b) relative maximum points of f ? Why?
d) For all values of $b>0$, show that all inflection points of the graph of f lie on the line $y=x$.

1995 BC6
Let f be a function whose domain is the closed interval $[0,5]$. The graph of f is shown below.

$$
\text { Graph of } f
$$

Let $h(x)=\int_{0}^{\frac{x}{2}+3} f(t) d t$.
a) Find the domain of h.
b) Find $h^{\prime}(2)$.
c) At what x is $h(x)$ a minimum? Show the analysis that leads to your conclusion.

1991 BC4 (no calculator)
A particle moves along the x-axis so that at time t its position is given by $x(t)=\sin \left(\pi t^{2}\right)$ for $-1 \leq t \leq 1$.
a) Find the velocity at time t.
b) Find the acceleration at time t.
c) For what values of t does the particle change direction?
d) Find all values of t for which the particle is moving left.

1994 BC4 (no calculator)
A particle moves along the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=t \ln t-t$. At time $t=1$, the position of the particle is $x(1)=6$.
a) Write an expression for the acceleration of the particle.
b) For what values of t is the particle moving to the right?
c) What is the minimum velocity of the particle? Show the analysis that leads to your conclusion.
d) Write an expression for the position, $x(t)$, of the particle.

