BC Calculus

Review \#1: Limits and Continuity

Determine the limit of each of the following

1. $\lim _{x \rightarrow 2} \frac{x-2}{x-2}$
2. $\lim _{x \rightarrow 5} 2 x^{2}-4 x+7$
3. $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}$
4. $\lim _{x \rightarrow-\infty} \frac{2 x+3}{1-x^{2}}$
5. $\lim _{x \rightarrow 9} \frac{x-0}{\sqrt{x}-3}$
6. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
7. $\lim _{x \rightarrow 2} \frac{x}{4-x^{2}}$
8. $\lim _{x \rightarrow \infty} \frac{x^{2}+4}{x-x^{2}}$
9. Which of the following is a horizontal asymptote for $f(x)=\frac{6 x^{2}+2 x-4}{2 x^{2}+3 x+2}$?
a) $y=-3$
b) $y=-2$
c) $y=2$
d) $y=3$
e) $y=4$
10. What is the $\lim _{x \rightarrow 3^{+}} \frac{x+3}{x-3}$?
11. Find $\lim _{x \rightarrow-\infty} \frac{|8 x+6|}{4 x-2}$
12. Let $f(x)=\left\{\begin{array}{ll}x^{2}-2, & x<1 \\ -\frac{1}{2} x+1, & x \geq 1\end{array}\right.$. Find
a) $\lim _{x \rightarrow 1^{+}} f(x)$
b) $\quad \lim _{x \rightarrow 1^{-}} f(x)$
c) $\quad \lim _{x \rightarrow 1} f(x)$
13. Rank each kind of function in increasing order according to its order of magnitude.
a) power function: $f(x)=x^{n}$
b) logarithmic function: $g(x)=\ln x$
c) exponential function: $h(x)=7^{x}$
d) Factorial function: $k(x)=x$!
14. The graph of f is shown below. At which of the following points is f continuous?

Figure 17
a) $x=-3$
b) $x=-1$
C) $\quad x=1$
d) $\quad x=3$
e) all of the above
15. The figure shown in the problem above has a removable discontinuity at which of the following points?
a) $x=-3$
b) $\quad x=-1$
c) $x=0$
d) $x=1$
e) $x=3$
16. Sketch the graph of a function with the following properties.
i) $f(-2)$ exists
ii) $\lim _{x \rightarrow-2}$ exists
iii) f is not continuous at $x=2$
iv) $\lim _{x \rightarrow 1} f(x)$ does not exist

17. Let $y=f(x)$ be the function shown below. Which of the following statements is false?

a) $\quad \lim _{x \rightarrow 1} f(x)=1$
b) $\quad \lim _{x \rightarrow 2^{-}} f(x)=2$
c) $\quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)$
d) $\quad \lim _{x \rightarrow-1} f(x)=2$
18. How many times do the graphs of $y=2^{x}$ and $y=x^{100}$ intersect?
19. Use the graph below to answer the following questions.

Graph of $\mathrm{g}(\mathrm{x})$
a) $\quad \lim _{x \rightarrow 1^{-}} g(x)=$
b) $\quad \lim _{x \rightarrow 1^{+}} g(x)=$
C) $\quad \lim _{x \rightarrow-1} g(x)=$
d) $\quad g(1)=$
20. Without using L'Hopital's Rule, evaluate each of the following. Show your work.
a) $\lim _{x \rightarrow \infty} \frac{\ln 3 x}{x^{3}}$
b) $\quad \lim _{x \rightarrow \infty} \frac{x^{100}}{e^{0.01 x}}$
c) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{x}$
21. The graph of $\frac{f(x)}{g(x)}$ is shown for each of the following. State whether $f(x)$ or $g(x)$ has the higher order of magnitude.
a)

b)

c)

22. CALCULATOR ALLOWED: The graph of $y=2^{x}$ and $y=x^{2}$ are shown below.

Figure 25
a) Find the coordinates of all three points of intersection.
b) Find the area of the regions bounded by the two graphs.
23. Let f be the function defined by $f(x)=2 x e^{2 x}$
a) Find $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$
c) Find the absolute minimum value of f. Justify your answer.
c) What is the range of f ?

